Solving Convection-diffusion Equations with Mixed, Neumann and Fourier Boundary Conditions and Measures as Data, by a Duality Method
نویسنده
چکیده
In this paper, we prove, following [1], existence and uniqueness of the solutions of convection-diffusion equations on an open subset of R , with a measure as data and different boundary conditions: mixed, Neumann or Fourier. The first part is devoted to the proof of regularity results for solutions of convection-diffusion equations with these boundary conditions and data in (W 1,q(Ω))′, when q < N/(N − 1). The second part transforms, thanks to a duality trick, these regularity results into existence and uniqueness results when the data are measures.
منابع مشابه
A Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملA Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملA Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows
Abstract The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...
متن کاملNon-Darcian Mixed Convection Flow in Vertical Composite Channels with Hybrid Boundary Conditions
In this article, the effects of viscous dissipation and inertial force on the velocity and temperature distributions of the mixed convection laminar flow in a vertical channel partly filled with a saturated porous medium have been studied. In this regard, the Brinkman–Forchheimer extended Darcy model was adopted for the fluid flow in the porous region. In addition, three different viscous dissi...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کامل